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Multidisciplinary Design Optimization Under

Uncertainty: An Information Model Approach

Abstract

Motivated by needs of concurrent multi-disciplinary design of a multi-purpose
vehicle, a modeling and methodological approach to handling tradeoffs is presented.
Each component has uncertain elements and a random performance which is in-
fluenced by the performance of other components. The components may require
different knowledge bases and models with different mathematical structures, time
and size scales, calling for higher-level coordination.

The theory of reproducing kernel Hilbert spaces provides the mathematical
foundation for the approach. Performance is modeled as a random function of
uncertainties that are considered as independent variables. Higher-level design
decisions, the result of tradeoffs between alternative component designs, are based
on information models of component performance functions. The models make
use of second-order statistics of the performances and an algebra of their reduced-
order representations. Multicriteria optimization methods are used to determine
preferred overall designs.

1 Introduction

Challenges associated with decision making for large complex systems in the pres-
ence of uncertainty and risk have been of special interest to scientists and engineers
in many disciplines. In engineering design, the consistent effort to come up with
methodologies in support of complex systems design has been reflected since the
nineteen eighties in the creation and development of multidisciplinary design opti-
mization (MDO). As a consequence, a dominating majority of studies on complex
systems in engineering design has been based on mathematical optimization and,
more specifically, mathematical programming. The inclusion of uncertainty has
made the complex system modeling more realistic because it recognized the in-
ability to determine the true state of affairs of a system, but also it has made the
modeling more difficult due to the challenge of representing the unknown. In effect,
the main research effort has evolved in two concurrent directions of more effective
optimization formulations and more sophisticated models of uncertainty.
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A number of mathematical concepts and theories have been used to represent
aleatory and epistemic uncertainties (Helton and Oberkampf, 2004) and put them
to work in concert with MDO. Under the assumption that every uncertainty has a
distribution, which is amenable to Bayesian techniques (Berger, 1985) and favored
by the largest part of the operations research community as discussed in Rockafel-
lar (2007), probability theory with random variables gave rise to reliability-based
design optimization (RBDO). Possibility theory with fuzzy variables and possibil-
ity distributions, and evidence theory with measures of belief and plausibility have
been used to relax stronger requirements of probabilistic methods (see e.g., Kohlas
and Monney, 1995). Refer to Agarwal et al. (2004), Youn et al. (2004), Chiralak-
sanakul and Mahadevan (2007), Zhang and Huang (2010), Zhao et al. (2010), and
others for MDO-based approaches and Du and Chen (2005), Wang et al. (2009),
and Huang et al. (2010) specifically for collaborative optimization-based methods
that make use of these theories. MDO, originally based on single objective opti-
mization, has also used multiobjective optimization (Li and Azarm, 2008). During
the last decade, analytical target cascading (ATC), an optimization methodology
for hierarchical decomposition and coordination of complex systems in enginering
design, has developed independently of MDO. It has been extended to probabilis-
tic ATC to account for aleatory uncertainty (Kokkolaras et al., 2006; Han and
Papalambros, 2010; and Xiong et al., 2010). Game theory (see e.g., Gupta and
Krishnamurthy, 2004), rough sets theory (see e.g., Shao et al., 2008), or kriging
models (see e.g., Martin and Simpson, 2006) are examples of other mathematical
tools that have been selected to model uncertainty. To represent uncertain vari-
ables for which no information is available, interval analysis has been applied (Du
and Zhang, 2010). Some authors employ various combinations of these mathemat-
ical tools in a quest to propose more effective methodologies supporting design (see
e.g., Guo and Du, 2010). To recognize research efforts beyond optimization, we
refer to Gurnani and Lewis (2004) where the choice of a preferred design results
from a selection process from a finite set of alternatives.

Despite many advances the design of complex engineered systems remains a
challenge and novel modeling and methodological paradigms are called for. Mod-
eling and decision difficulties for complex systems are highlighted in the U.S. De-
partment of Energy report of Hendrickson and Wright (2006). For instance, when
a design problem is decomposed, the components can require different knowledge
bases. Some components may have dynamic physics-based models with force or
energy contraints and others static utility-based models with geometric constraints
(Brown et al., 2008, p.11). Also, the components might have radically different
time and size scales (Brown et al,. 2008, p. 12). If we do not decompose, an all-at-
once approach to optimization will be complicated by the different mathematical
representations of the components (see Brown et al., 2008, p. 15). The NSF report
of Simpson and Martins (2010) contains recommendations for MDO to advance
the design of complex engineered systems while the United States Army Research
Laboratory Broad Agency Announcement in Mathematical Sciences (2010) calls
for the development of quantitative models of complex phenomena.
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Our research is heavily influenced by the government reports cited. Of spe-
cial interest to us are the challenges associated with the decision making under
uncertainty and risk, which are present in vehicle design, particularly in the con-
current design of vehicle components requiring disjoint knowledge bases. These
multidisciplinary design problems raise questions of communication across disci-
pline boundaries, appropriate tradeoffs, and achieving total system goals. Our
research is illustrated by the need to coordinate the concurrent design of a multi-
purpose vehicle suspension system operating in an uncertain environment with
random exogenous forcing, and the design of the vehicle payload space with an un-
certain mission and random performance. While the two design problems require
different knowledge bases and models with different mathematical structures, time
scales, and size scales, the design decisions must be coordinated because of design
interactions between the two systems. Imposition of a priori requirements to insure
compatibility by reducing the design space of the two design problems might result
in a vehicle with a restricted range of operating environments or reduced mission
capability.

We present an approach to handling tradeoffs in a multi-discipline design prob-
lem, where the design model for each discipline has uncertainty and random per-
formance which may also be influenced by the performance of one or more of the
other discipline design models. The approach is illustrated on a small computa-
tional example with difficulties similar to those present in the full vehicle design
problem. One component design problem is a suspension design balancing the total
load (empty vehicle, cargo, and passengers) which reduces to a component decision
problem using a physics-based stochastic dynamic response model (a stochastic
differential equation (SDE) model) with one design variable and two uncertain en-
vironmental variables (Kloeden and Platen, 1992). The problem is formulated as
a selection problem minimizing the measured system imbalance over a finite set
of environments and designs. The other component design problem is a payload
capacity design with the the goal of a division of payload space between cargo and
passengers and the maximization of a random utility function. This design problem
reduces to a component decision problem formulated as a utility-based stochastic
portfolio problem with a single uncertain variable modeling the vehicle’s mission.
In this two-level multicriteria decision process, the lower-level optimization prob-
lems produce multiple candidate subdesigns that are efficient at the lower level,
while the higher-level design selection problem accounts for interactions between
the lower-level efficient alternatives and results in a preferred design over the full
range of uncertain operating environments and missions.

The paper is structured is follows. In Section 2, we discuss particular aspects
of our approach including decision making under uncertainty and risk, informa-
tion models, the design context, reproducing kernel Hilbert spaces, and separable
random fields. In Section 3, a “toy” vehicle design problem with uncertainty and
risk is presented as a simplified but convincing example. The example illustrates
a two-level design process with multiple decision makers using a multicomponent
information model. Section 4 introduces a simple computational example with re-
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duced order information models of the components. An approach to handling a
multiple-component design problem by constructing a higher-level decision model
is given in Section 5. Section 6 concludes the paper.

2 Particular aspects of the problem

Uncertainty, risk and rational decision making. Oberkampf et al. (2004)
produced a very useful summary of attitudes toward uncertainty in the engineering
community. Uncertain variables are classified as aleatory if they have a distribution
and as epistemic if they do not have a distribution. For instance, future vehicle
operating conditions or vehicle missions will have distributions from a fleet per-
spective but lack distributions at the individual vehicle level. In the design process
we can not predict with confidence the operating conditions and mission of any
individual vehicle. Thus we must design for a range of operating conditions and
missions, i.e., treat operating conditions and missions as epistemic uncertainties.
This example shows that the distinction between aleatory and epistemic variables
is really about the modeler’s perspective rather than properties of the variable.
From a bird’s viewpoint a variable will be aleatory while from a frog’s viewpoint
the variable will be epistemic. While many traditional decision methodologies have
taken the simpler bird’s viewpoint, the frog’s viewpoint may be required for a bet-
ter decision over a range of uncertainty values. In our approach, uncertainty is
system variability that does not have a probability distribution, first introduced by
Knight (1921). Our uncertainties without qualifiers are epistemic and modeled as
independent variables defined on subintervals of Rn (Reneke and Samson, 2008).
In Samson et al., (2009), this approach is presented against a review of different
perspectives on uncertainty and risk.

With the increase in the complexity and magnitude of decision problems, the
rationality of the decision process has come to the spotlight (Hazelrigg, 2003).
Savage (1972) outlines conditions for preferences in his Postulates I-IV to ensure
rational decision making. Our approach to decision making satisfies the Savage
postulates. Multicriteria optimization (Ehrgott, 2005), a powerful methodology
when extended to problems where criteria values are functions of the uncertainties,
enables us to verify that decisions are rational.

MDO and information models. Within the MDO framework, discipline-
based decomposition leads to radically different models of components based on
different knowledge domains (see e.g., Du and Gunzberger, 2000). Aside from the
questions of uncertainty and risk, the components interact through the exchange of
physical quantities rather than through the exchange of information, which is a fun-
damental difference from our modeling approach. The MDO system model is still
one large physics-based model. The decomposition does reduce the computational
burden of the optimization problem but does not reformulate the model reducing
the order of the model. In our approach, information models are used to represent
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components interacting through the exchange of information and not subject to
conservation rules, and also to reduce the order of the model. Furthermore, we do
not use mathematical programming in the traditional sense but optimize over a
finite set of alternatives.

Design stages and levels, and problem decomposition. Reneke and
Wiecek (2005) presented a vision for the design of complex systems and now make
use of that earlier language in this exposition. In order to properly understand the
context for our higher-level design problem we introduce a design framework. We
assume that design in complex systems proceeds through stages from preliminary
designs to final designs. At each stage decisions will have been made in previous
stages which are taken as constraints in the current stage.

Within each stage the basic strategy is problem decomposition from the top
down and decision making from the bottom up. In early stages the decomposi-
tion will tend to focus on function, for instance, vehicle configuration. In middle
stages the decomposition will tend to focus on system component design within
the constraints set from earlier design stages. In later stages design alternatives
will have narrowed and constraints tightened leading to a final preferred design.
As the decomposition proceeds, more and more specialized knowledge, including
knowlege of uncertainties and risk, is required leading to the introduction of design
levels. The design levels represent different knowledge bases (different knowledge
not more) required for coordinating component designs passed up from the next
lower level. For a discussion of a top down decision strategy see Butler (1977) and
Anandalingam (1988).

Design stages support the orderly introduction of system requirements. Ide-
ally, requirements are not introduced too early limiting the design space or too
late forcing costly design fixes. Design levels support orderly tradeoffs between
lower-level alternatives based on higher-level objectives. Design stages imply an
iterative design process with higher-level decision makers learning of lower-level
design possibilities and lower-level decision makers learning of higher-level design
objectives.

Reproducing kernel Hilbert spaces. Infinite dimensional function spaces
provide the natural setting for design problems with uncertainty in Knight’s sense.
We make several modeling assumptions that specialize the function spaces reducing
the design problems to tractable decision problems. Keep in mind the two spaces
that we must provide for, the space of random fields modeling stochastic system
performance and the space of deterministic decision variables. The fundamental
connection is provided by reproducing kernel Hilbert (RKH) spaces, an old topic
dating from the first half of the twentieth century with many contributors and wide
applications (Stone, 1932; Aronszajn, 1950). More narrowly, our subject begins
with the realization that covariances are nonnegative definite functions (Loève,
1948) establishing a relation between probabilistic models and reproducing kernel
Hilbert spaces.
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We have pursued a path exploring special cases but with accessible results
(Reneke and Samson, 2008). The covariance kernel of the standard Wiener process
on [0, 1] is the reproducing kernel of the space G of Hellinger integrable functions
g on [0, 1] with g(0) = 0 introduced in Hellinger (1907). The covariance R of
a general zero mean Gaussian process {X̂t, 0 ≤ t ≤ 1}, subject to conditions, is
the matrix representation of a nonnegative definite operator on the complete inner
product space of Hellinger integrable functions on [0, 1]. Further, discretizations
{X̂(t(k)), 0 = t0 < t1 < . . . < tn = 1} can be simulated by {[(RC

tt)
T Zt](k)}n

k=0,
where RC

tt is the upper generalized Choleski factor of an (n+1)×(n+1) nonnegative
matrix Rtt and Zt is an (n + 1)-dimensional (0, 1)-normal random vector.

Our spaces, operators, and representations fit into a framework provided by the
general theory due to Mac Nerney (1980). Since the finite dimensional positive def-
inite matrices will be discrete approximations of positive definite linear operators,
the decision maker will not need to go beyond the discrete representations.

We are concerned only with a special class of random fields that can be analyzed
in terms of marginal distributions. The simplification permits us to extend the
analysis of random processes to random fields.

Separable representations. Our development of a class of zero mean Gaus-
sian random fields follows the pattern of the Wiener field W on the unit cube
[0, 1] × [0, 1] × [0, 1] (Chentsov, 1956). In particular, the covariance kernel of W
has a simple form, namely,

E(W (a, b, c)W (t, u, v)) = min(a, t)min(b, u)min(c, v).

This property generalizes for certain zero mean random fields X̂ to

E(X̂(a, b, c)X̂(t, u, v)) = R(a, b, c, t, u, v)

= R1(a, t)R2(b, u)R3(c, v),

where R is the covariance kernel of X̂ and each Ri is a nonnegative definite function
on [0, 1] × [0, 1]. Fields with this property are said to be separable (Vanmarcke,
1983). In subsequent sections we will show that discretizations of X̂ can be sim-
ulated in a manner analogous to the simulation of the discrete random process
described above, a key to our information models. Further, reduced order repre-
sentations of separable fields X̂ and Ŷ will be available for modeling interactions
between system components with response fields X̂ and Ŷ . Refer to Gohberg and
Krein (1970) for a classic development of the operator algebra for a one variable
deterministic case.

In general, the independence expressed in the factorization condition above
might not hold. However, such independence is implicit in the common engineering
practice of exploring a given physical system by allowing only one quantity to vary
at a time.

Vanmarcke (1983) provides a foundation reference for separable fields in engi-
neering with separability given in terms of correlation functions rather than covari-
ance kernels. Refer to Yaglom (1986) for using correlations rather than covariances
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and alternative representations for random fields. While related to our random
fields, random space-time functions have a different flavor (Kyriakidis and Journel,
1999; Genton, 2007). In fact, our random fields would correspond to the limited
case where spatial behavior is constant with respect to time.

3 A “toy” vehicle design problem with uncer-

tainty and risk

In this section, a simple illustrative example is introduced that infuses the mod-
eling/decision development with needed realism and confronts us with modeling
difficulties that must be resolved for the decision approach to be applicable to
more complex design problems. However, the approach is more general than the
example and the particulars of the example only illustrate the range of possible ap-
plications. A preview of the component computational models is given in general
terms. The component models illustrate concretely issues that must be resolved in
order to construct a multicomponent model. Finally, information models are dis-
cussed in general terms in preparation for the construction of the higher-level model
used to coordinate the component designs, i.e., choose from alternative component
designs.

3.1 Introduction of the simplified example

Our task is developing a methodology for handling a multiple component/multiple
discipline design problem. In this paper we are limited to a two-level design process
with two lower-level designers from different disciplines using models with incom-
patible mathematical formulations.

The higher-level design goal for the example is a low maintenance/high utility
vehicle. The higher-level vehicle design problem decomposes into separate lower-
level design problems for the vehicle suspension and partition of the payload space
between passengers and cargo. Each of the component design problems involve
uncertainty and risk. The lower-level problems produce alternative designs that
result in a single preferred design at the higher level taking into account tradeoffs of
various combinations of the lower-level designs. The example produces a suspension
system design and a logistics design that result in a low maintenance/high utility
vehicle that minimizes risk over the range of uncertainty values.

The two-component design problems use distinctly different mathematics and
methods. The two submodels represent assumptions about the objective world that
neither set of designers would feel comfortable making for the other component,
i.e., the logistics designers cannot easily become suspension designers and similarly
for the suspension designers. Small changes in the underlying assumptions can lead
to significantly different preferred designs.

Both component problems are of high dimension because of the uncertainties
and so directly combining the two models seeking a single preferred design would be
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infeasible. The component problems will be simplified so the difficulties inherent in
multidisciplinary optimization are not masked. Further, the submodel descriptions
will be straight forward and the computational burden light enough that an overall
system picture can emerge.

3.1.1 The conceptual design problem

Every design problem has a context. In our idealized scenario we assume that the
vehicle design proceeds through stages starting with a preliminary design stage and
ending with a final design stage resulting in a preferred vehicle design. Decisions
will have been made in previous stages and are treated in the current stage as
constraints. For our “toy” problem we consider a late stage problem. The model
constants, maximum payload weight and available space for passengers and cargo,
are set.

Within each design stage the vehicle design problem is decomposed into design
levels with multiple decision makers at each level. Decomposition proceeds from
the top down and decisions from the bottom up. Knowledge and design goals are
not uniformly distributed across levels but rather are stratified. Adjacent levels and
different components at a given level represent different knowledge bases. We also
can expect different tolerances for risk and different design uncertainties between
levels and components. The “toy” problem will illustrate these difficulties and
provide a platform for testing our ideas for dealing with these difficulties and others
that will emerge.

The “toy” problem is presented as a problem of coordinating two lowest-level
designs. The lowest level is not at the finest granularity (Du and Gunzburger, 2000)
and so the two component models do not interact physically, i.e., by exchanging
material, forces, or energy with conservtion laws. Different size and time scales
would make interactions difficult. Rather the components interact through an
exchange of information which is modeled by the higher-level decision maker.

Unmodeled uncertainties and criteria are passed down from the higher level.
At the lower level uncertainties are interpreted in terms of the lower level models
and modeled as number intervals. Component performances of selected designs are
modeled as random functions of the uncertainties and the second order statistics
of the performances, again functions of the uncertainties, are passed up to the next
higher level.

Uncertainties, criteria, and design performances received by the higher level
also have to be interpreted. Balance as measured by the suspension designer will
be interpreted by the higher-level decision maker as vehicle stress with implications
for maintenance. Similarly, payload utility as measured by the logistics designer
will be interpreted as vehicle usefulness.

In general terms, the uncertain vehicle operating environment, important for
the suspension system design, is modeled as uncertain parameters at the suspension
design level. The uncertain vehicle mission, important for the logistics design, is
modeled as the average trip length at the logistics design level. Random variability
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in performance results from exogenous random forces on the suspension system,
depending on the operating environment, and background (exogenous) conditions,
depending on the mission, affecting the performance of the payload design. The de-
signer must plan for the random disturbances but the exogenous “noise” is outside
his/her control.

3.1.2 Higher-level component interactions based on information

Remember that our modeling proceeds from the top/down. Further, the higher-
level modeler does not know or understand the lower-level models. The diagram
in Figure 1 represents the higher-level conceptual model of the interactions of the
two lower-level components. The arrows are “influences”, the Wi’s are exogenous
disturbances, and the Gi’s are component responses. The details will be filled in
as we proceed with our exposition.

The conceptual model is an assumption about the interactions of component
performances. The zero mean random part of the suspension balance as information
will be taken as part of the background “noise” for the payload utility. The zero
mean random part of the payload utility as information will be taken as part of
the background noise for the suspension balance.

To understand component performances as information, consider the follow-
ing. If ≡ stands for surrogate then ’balance of suspension design’ ≡ ’low vehicle
and payload stress’ ≡ ’low maintenance’. Further, ’payload utility’ ≡ ’vehicle pay-
load variability’ ≡ ’high maintenance.’ Thus the higher-level decision maker must
consider tradeoffs of vehicle usefulness and vehicle maintainability.

3.2 Preview of the information model

Physics based models typically are concerned with flows of material, forces, or
energy all subject to conservation laws. In contrast, information from different
sources affecting a component’s performance is summed (linear combinations). In-
formation of the performance of a given component can be shared equally by any
number of additional components.

Statistics is the art and science of extracting information from data sets. Statis-
tical models, particularly correlation models, are higher-level or information mod-
els. Examples of where information models have been useful include models for life
cycle performance, models for distributed manufacture, econometric models, man-
agement models, finance models, and security models. Our concern is for informa-
tion models based on second-order statistics using an algebra of linear operators
on classes of functions of the underlying uncertainties.

For vehicles, the component design problems use physics-based models, but the
higher level coordination of lower level designs is based on information models. The
models enable the decision maker to take into account the influences component
designs have on one another. As the decision process moves up a level information
is lost. This is a familiar phenomenon in statistical models. The art enters through
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the selection of features of the lower-level models that are important to the higher-
level decisions. This selection process is carried out by the lower-level designers. For
instance, “balance” for the lower-level suspension designer will have an operational
definition which is lost for the higher-level decision maker but is acceptable to the
lower-level designer as a surrogate for future suspension maintenance.

Outline of information model requirements. Higher-level information
models are based on second-order statistics of component performances as func-
tions of the uncertainties. In the modeling phase, criteria and uncertainties will
be passed down to the component designers. The criteria and uncertainties have
to be interpreted by the lower-level designers in terms of the lower-level models.
Performances of the lower-level designs are passed up in terms of the second-order
statistics. The statistics are the only information on the lower-level designs avail-
able to the higher-level designer.

For instance, the higher-level designer is interested in a low-maintenance vehicle
operating in a range of conditions. The criterion that is passed down has to be
meaningful to the lower-level designer in the current design stage. Maintenance
costs as a criterion may be meaningless since external factors influencing costs
may lie outside the lower-level designer’s purview. Both designers can agree on
a measure of suspension balance as a criterion. The higher-level designer can
interpret better balance as a reduction in stress on the vehicle and payload reducing
maintenance. The lower-level designer can interpret better balance as a more equal
dissipation of energy among the suspension support points increasing the time to
first failure.

The information models will be limits of finite discrete approximations. In
order to simplify the notation, we adopt the following naming convention for dis-
cretizations of functions defined on intervals. Suppose that {uℓ}

L
ℓ=0 is a partition

of [0, 1], i.e., 0 = u0 < u1 < . . . < uL = 1. If F is a function defined on [0, 1]
then Fu is the discrete function or vector given by Fu(ℓ) = F (uℓ). Similarly, for
Gv and Ht, where {vm}M

m=0 and {tn}
N
n=0 are partitions of [0, 1]. If H is a function

of two variables then Huu(ℓ, ℓ̄) = H(uℓ, uℓ̄) and similarly for Hvv and Htt. We
take Huv(ℓ, m) = H(uℓ, vm). If H is a function of three variables then we take
Huvt(ℓ, m, n) = H(uℓ, vm, tn).

In design problems the emphasis is on component performance fields which are
random. Since the higher-level decision models and decisions are based on the
second-order statistics of the performances, reduced-order simulations of perfor-
mances become the immediate objective. We begin with discrete simulations of
the Wiener field W defined on [0, 1] × [0, 1] × [0, 1], setting the pattern for our
simulations of more general zero mean fields. The covariance kernel of W is

E(W (u, v, t)W (ū, v̄, t̄)) = min(u, ū) · min(v, v̄) · min(t, t̄).

Let K(x, y) = min(x, y) for 0 ≤ x, y ≤ 1. Thus we can construct discrete simula-
tions of W by
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Wuvt(ℓ, m, n)

=
ℓ

∑

i=1

m
∑

j=1

n
∑

k=1

[(KC
uu)T ](ℓ, i)[(KC

vv)
T ](m, j)[(KC

tt )
T ](n, k)Zuvt(i, j, k) (1)

= [(KC
uu)T (

n
∑

k=1

[(KC
tt )

T ](n, k)Zuvt(·, ·, k))KC
vv ](ℓ, m),

where Z is a (0, 1)-normal random function on [0, 1] × [0, 1] × [0, 1]. In the limit
(the limit in distribution),

W (u, v, t) =

∫ u

0

∫ v

0

∫ t

0
Z(x, y, z) (dz)1/2 (dy)1/2 (dx)1/2.

Note that W (uℓ, vm, tn) and Wuvt(ℓ, m, n), the discrete simulation, are both
zero mean normal random variables with the same variance and so Wuvt(ℓ, m, n)
may be thought of as a simulation of W (uℓ, vm, tn). The reader should also observe
that the simulation of W (uℓ, vm, tn) was constructed using a transformation of
the discrete fields Zuvt providing an equivalence between the simulation and the
transformation representation of Wuvt. An information model of Wuvt can be taken
in either sense.

A similar construction holds for two parameter Wiener field and the one pa-
rameter Wiener process. We will denote all cases with the reserved designation W
depending on the context to identify the number of parameters.

Briefly, the technical requirements for constructing an information model are
as follows. Given a zero-mean random field X̂ on [0, 1] × [0, 1] × [0, 1] from a
component response, we require the existence of the integral

Ŷ (u, v, t) =

∫ u

0

∫ v

0

∫ t

0
X̂(x, y, z) (dz)1/2 (dy)1/2 (dx)1/2

for all (u, v, t) in [0, 1] × [0, 1] × [0, 1]. For the existence, we will rely on an
application of the Central Limit Theorem, i.e., X̂ must satisfy certain conditions.
Without further comment, in the illustrative example the conditions hold when
required.

We do not need to simulate Ŷ but observe that if E(X̂(x, y, z)X̂(x̄, ȳ, z̄)) = 0,
when (x, y, z) 6= (x̄, ȳ, z̄), and if X̂ is separable with covariance kernel
R1(x, x̄)R2(y, ȳ)R3(z, z̄), then the covariance kernel of Ŷ is given by

E(Ŷ (u, v, t)Ŷ (ū, v̄, t̄))

=

∫ min(u, ū)

0
R1(x, x) dx ·

∫ min(v, v̄)

0
R2(y, y) dy ·

∫ min(t, t̄)

0
R3(z, z) dz.

11
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Given the covariance kernel Ŷ we require that it is the matrix representation
of a nonnegative definite operator A on the space of Hellinger integrable functions
g ∈ G defined on [0, 1]× [0, 1]× [0, 1], with g(0, v, t) = g(u, 0, t) = g(u, v, 0) = 0.
If Ŷ is separable then there are implications for the operator A. In particular,
the field A1/2W defined as a limit using the Central Limit Theorem is a reduced-
order representation of the zero mean field Ŷ , i.e., Ŷ and A1/2W have the same
covariances (Reneke and Sundeep, 2008). Note that only the second-order statistic,
the covariance of Ŷ , is passed up to the higher-level decision maker. The levels
represent different knowledge bases and there is no requirement that the higher-
level decision maker understands the models used by the lower-level designer.

4 A simple computational example

The engineering context reduces the suspension design problem to balancing the
total load (empty vehicle, cargo, and passengers) using a physics-based dynamic
response model (SDE model) with uncertain parameters. The suspension system
is modeled as a spring system in the spirit of the classroom approach, as illustrated
in Figure 2 (Blundell and Harty, 2004). The payload capacity design problem is
similarly reduced to a portfolio problem based on a static stochastic model with un-
certain parameters. While each of these component models are well known, we are
concerned with their interaction in a simple system in the presence of uncertainty
and risk.

In this section, a stochastic 3-spring model of the vehicle suspension will be
introduced with two uncertain parameters modeling the uncertain operating en-
vironment and one design parameter. The approach to the suspension design in
the presence of uncertainties is data-based, i.e., it is based on the toy-problem
simulations of the SDE model. A surrogate for system balance will be developed
leading to six alternative suspension designs. Mission dependent distributions for
the stochastic utilities in the logistics model will be introduced and the approach
to the logistic design in the presence of uncertainty differs radically from the de-
sign approach used for the suspension system. The approach will lead to twelve
alternative designs.

The higher-level designer must coordinate the lower-level designs but need not
be aware of or understand the models and methods employed by the lower-level
component designers. Performances of the seventy-two different vehicle designs
will be evaluated at the higher level in four operating environments with seven
missions using a reduced-order vehicle information model. The vehicle model will
be introduced in Section 5 when the technical details can be explored.

4.1 The 3-spring model

The deterministic model for the 3-spring system (Reneke et al., 2010) is

m1y
′′

1 = −(k1 + k2)y1 − b1y
′

1 + k2y2 + f1(t)

12
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m2y
′′

2 = k2y1 − (k2 + k3)y2 − b2y
′

2 + f2(t).

The spring constants k1, k2 and k3 are fixed for the current design stage. Feasible
designs are given by masses m1, m2. The friction coefficients b1, b2 will be uncertain.
Exogenous influences are represented by known time-dependent forces f1(t) and
f2(t). For simplicity we assume that f2 = 0, df1 = −f1 dt, and f1(0) = 1. System
output is the measured displacements y1(t) and y2(t) of the masses.

Stochastic variability in the spring problem. The deterministic vector
ODE model with stochastic forcing becomes the stochastic SDE model

dY = FY dt + GY dW,

where

F =















0 1 0 0 0

−k1+k2

m1
− b1

m1

k2

m1
0 1

m1

0 0 0 1 0
k2

m2
0 −k2+k3

m2
− b2

m2
0

0 0 0 0 −1















and

GY dW =















0
ǫ2Y2 dW2

0
ǫ4Y4 dW4

ǫ5 dW5















.

We assume that the noise coefficients ǫ2 = 1/2, ǫ4 = 1/3, and ǫ5 = 0.1 are
given. The terms dW2, dW4, and dW5 represent exogenous system disturbances.
The initial condition Y (0) = [−1, 0, 1, 0, 1]T is an extreme event that we are
designing against. Note that Y1 and Y3 are the randomized displacements of the
masses m1 and m2, respectively. Y2 and Y4 are the corresponding randomized
velocities. The equation component Y5 can be interpreted as a force exerted on the
suspension system by a maximum vehicle acceleration. The disturbances W2, W4,
and W5 are interpreted as additional random forces generated by operating over
an uneven terrain.

Design objective. The vehicle design goal is to balance the support of the
weight of the empty vehicle plus the vehicle load to minimize the stress on both
the vehicle and the load. For the toy problem the design objective is interpreted
as choosing masses m1 and m2 such that m1 + m2 = 3 (feasibility) and the en-
ergy dissipated through friction by each of the masses over the time interval [0, T ]
are approximately the same (optimality). In particular, for time T = 10secs,
let b = [b1, b2]

T and E1(b) =
∫ 10
0 b1Y

2
2 (t) dt and E2(b) =

∫ 10
0 b2Y

2
4 (t) dt be the

energies dissipated by friction, respectively. We want the mean and variance of
P (b) = E1(b) − E2(b) to be as close to zero as possible. The two uncertain friction

13
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coefficients represent the uncertain operating environment. The measure of design
performance P (b) is stochastic with computable distributions depending on the
friction coefficient values.

Designs. Feasible designs for the 3-spring system are determined by a single
design parameter m1 and the constraint 0 ≤ m1 ≤ 3. If 0 ≤ m1 ≤ 3 then the pair
(m1, 3 − m1) is a feasible design.

For additional realism, we assume that only a finite amount of data is available
for the design problem. For b1 ∈ {3/2, 7/4, . . . , 4}, b2 ∈ {1/4, 3/8, . . . , 3/2}, and
m1 ∈ {1/2, 1, /, . . . , 5/2}, the system was simulated 20,000 times over the interval
[0, 10] and the value of P (b) recorded. There are five designs each operating in
121 different environments given by the pairs (b1, b2). The SDE model was used
to generate the data but we could have started with five prototype designs and
exhaustively tested the suspension systems in 121 different environments.

4.1.1 Efficient designs

For each (b1, b2) the difference of dissipated energy is a normal random variable.
The assumption is based on an examination for the simulation data. Figure 3
depicts a histogram of P (b1, b2, m1) for b1 = 1.75, b2 = 0.375, and m1 = 1/2. Let
µ = E(P ) and σ2 = var(P ). Normality suggests using the decision surrogate µ+σ,
a function of (b1, b2, m1), for choosing the “best” design, i.e., a design for which
the risk or probability of P > µ + σ is approximately 0.15. For each pair (b1, b2)
cubic splines are used to extend µ(b1, b2, ·) + σ(b1, b2, ·) to more values of m1 in
the interval [0, 3] enlarging the design space. For b1 = 1.75 and b2 = 0.375 we have
Figure 4 depicting the interpolating curve.

The decision surrogate for each design, for instance for m1 = 1.6328 and m1 =
1.6719, can be represented as a surface over the operating environments (see Figure
5).

The optimal design is sought minimizing µ + σ over all (b1, b2) . This is clearly
impossible so we resort to multicriteria methods. Design m̄1 is said to dominate
Design m1 provided µ̄(b1, b2)+ σ̄(b1, b2) ≤ µ(b1, b2)+ σ(b1, b2) for all (b1, b2) with
at least one strict inequality. We can concentrate on the set of efficient designs D,
i.e., Design m1 is in D provided there is no Design m̄1 that dominates it. If Design
m1 is the only member of D then Design m1 is preferred.

The literature has a number of preference rules for choosing a preferred efficient
design (Ehrgott, 2005). One possible preference rule is to consider the lower enve-
lope MS∗ of the surfaces µ + σ for designs in D. The surface MS∗ is known as
the ideal surface and is not the surrogate surface for any design. The design whose
surrogate surface minimizes the distance to MS∗ is the preferred design. Again,
different metrics can be used, we use the ℓ2 metric because of our concentration on
inner product spaces.

In the example, the set of efficient designs contains 6 designs, with m1 in the
interval [1.6328, 1.6719]. The preferred design over all (b1, b2) is m1 = 1.6328. The
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distance of the surrogate surface for design m1 = 1.6328 to the ideal surface is
0.0268. Notice that the design is preferred by the lower-level designer and higher-
level information models play no role. We are left with the following question.
Which design is preferred taking into account the interactions with the logistics
design?

4.2 The portfolio problem

In contrast with the physics-based dynamic suspension model, the logistcis model
is based on “soft” knowledge and intuition derived from experience with similar
vehicles and missions. As with the suspension design we assume a late stage logistics
design with many constraints imposed by earlier design stages including space
and weight constraints. We will simplify the design problem for our purposes
by assuming the problem is achieving an optimal partition of the available space
divided between passengers and cargo.

The stochastic optimization problem with uncertainty becomes

max U(t) = p3/2U1(t) + (1 − p)2/3U2(t) (2)

subject to 0.1 ≤ p ≤ 0.9,

where p is the design variable, 0 ≤ t ≤ 1 represents the uncertain mission (nor-
malized average trip length), U1 is the random utility for passengers, and U2 is the
random utility for cargo. We assume for each t, that Ui(t), i = 1, 2, is a random
variable with a triangular distribution density fi and distribution F i

t (·). We are
suppressing, for the moment, the dependence of fi and F i

t (·) on t. The coefficients
(1− p)2/3 and p3/2 were chosen as part of the numerical example. The effect of the
weights is to emphasize U1 for larger values of p. Mathematically, the optimization
problem is nonlinear.

We are not attempting to model the decision maker with the stochastic util-
ities(see e.g., Blavatsky, 2008). Rather the model reflects an exogenous random
influence of the situation on the objective usefulness of the passenger or cargo
capacity. Thus the model assumption is about objective reality, not about the de-
cision maker. The form of the functional p3/2U1(t) + (1 − p)2/3U2(t) results from
designer preferences but this particular form was chosen for the illustrative example
to provide reasonable results.

The density for a triangular distribution F i
t (·) is given by three numbers {min,

mode, max}. In our example, the distributions depend on the value of the uncer-
tainty. Hence for each utility the three numbers are functions of the uncertainty
t. In Figure 6, the densities fi(t) for the distributions F i

t (·) of Ui, i = 1, 2, are
given by the functions {mini(t), modei(t), maxi(t)} for 0 ≤ t ≤ 1. Notice that
min1(t) = min2(t) and max1(t) = max2(t). The two utilities differ in the most
likely event for each, mode1(t) and mode2(t).

Without resolving the optimization problem we can estimate the value at risk
(Rockafellar, 2007) at any confidence level 1 − α for any design p and uncertainty
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value t. For instance, see Figure 7. Clearly, the design p = 4/5 performs best
for low average trip lengths and the design p = 1/5 for high average trip lengths.
The designs p = 2/5 and p = 3/5 perform somewhere in between. The goal is a
preferred design that performs “best” over the whole range of average trip lengths.

4.2.1 Conditional value at risk

In order to resolve the stochastic optimization problem (2) for a fixed value of
the uncertainty we have to invoke a coherent measure of risk. Our choice for the
coherent measure of risk is the “conditional value at risk” (Rockafellar and Uryasev,
2000, 2002) which enables us to use Rockafellar and Uryasev’s remarkable result.
Suppressing the dependence of the utility U on the uncertainty t and the logistics
design p,

CV aRα(−U) = min
c∈R

{c + (1 − α)−1E(max{0, −U − c})}. (3)

The basic computation is E(max{0, −U − c}). For the fixed t, let

g1(p, c) = E(max{0, −p3/2U1(t) − c})

=

∫

∞

−∞

max{0, −p3/2s − c} dF 1
t (s)

g2(p, c) = E(max{0, −(1 − p)2/3U2(t) − c})

=

∫

∞

−∞

max{0, −(1 − p)2/3s − c} dF 2
t (s),

where F 1
t and F 2

t are the distributions of U1(t) and U2(t), respectively, and 0.1 ≤
p ≤ 0.9. Again, suppressing the dependence on the uncertainty t we obtain

CV aRα(−U) = min
c∈R

{c + (1 − α)−1(g1(p, c) + g2(p, c)}.

The goal is the design p which minimizes CV aRα(−U), for 0.1 ≤ p ≤ 0.9. Thus
we are left with the problem

minimize : c + (1 − α)−1(g1(p, c) + g2(p, c) (4)

subject to : 0.1 ≤ p ≤ 0.9 and c ∈ R,

which is easily solved using the MatLab function fmincon. The reader is cautioned
not to optimize over (t, p, c). Our approach requires a design p to be evaluated
over all values of t, i.e., the uncertainty can assume any value in the interval [0, 1].

4.2.2 The preferred logistics design

In the example, α = 0.85. For each uncertainty value t ∈ {0, 1/64, . . . , 1}, we
resolve the corresponding stochastic optimization problem (4) for −U using the
conditional value at risk at confidence level α and the minimization rule (3). We
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obtain sixty-five designs {pj}
65
j=1 optimal for the corresponding uncertainty values

{ti}
65
i=1. For each of the optimal designs, we find the value at risk V aR1−α(−U) at

confidence level 1 − α, i.e., V aR1−α(−U) is the solution of F−U (z) = 1 − α, as a
function of t. Each design results in a 65-vector with components being the value
at risk for particular values of the uncertainty. The goal is a design with the largest
value at risk at confidence level 1 − α for each uncertainty value.

The sixty-five optimization problems result in twelve different designs with p
between 0.1 and 0.9, where each design is associated with a 65-vector of values
at risk. Multicriteria methods are used to identify the set of efficient designs by
comparing the vectors of values at risk.

We usually find that the set of efficient designs is a smaller (often much smaller)
subset of the total set of designs. Unfortunately, in our example there is no reduc-
tion in the number of designs to be considered. The higher-level decision maker
will consider how each of the twelve efficient logistic designs interacts with the ef-
ficient designs for the vehicle suspension system and choose the most compatible
subdesigns for the vehicle design.

Of interest is a lower-level preferred efficient design. We find a preferred design
by introducing an “ideal” point, for instance, the upper envelope of the value at
risk vectors for the twelve designs, and by choosing the design, the preferred design,
whose value at risk vector is closest to the ideal point measured by the ℓ2-norm.
In Figure 8, the preferred design p = 0.1309 is compared to the “all passenger”
(p = 0.9) and “all cargo” (p = 0.1) designs that were additionally examined.

Again, notice that the lower-level design process makes no use of the higher-level
information models. However, we still seek the design which is preferred taking into
account the interactions with the vehicle suspension design. There is no reason that
the subdesign preferred by the lower-level designer will be preferred by the higher-
level designer concerned with tradeoffs between alternative lower-level subdiscipline
designs.

The lower-level models and design methodologies are not part of the higher-level
decision maker’s knowledge base. The lower-level models and methods were chosen
to illustrate in a small way the breadth of possibilities. Our paper is concerned
with the higher-level models and the higher-level decision methodology. The higher-
level models are to be information models using the second-order statistics of the
performance functions of the lower-level designs.

4.3 The reduced-order component models

The construction of a reduced-order model for the utilization of the load capacity
is simpler than for the simplified suspension system. Hence we will start with a
reduced-order representation of random utility U of a partition of the load capacity
as a function of the uncertain trip length.
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4.3.1 Representation of the higher-level model of a logistics design

Suppose that the logistics design is fixed with utility function U . Let µB(t) =
E(U(t)) be the mean utility function estimated at the lower level and passed up
to the next higher level. At the higher level, µB(t) is the proxy for the mean
mission related maintenance. Note that U(t) = µB(t) + U(t) − E(U(t)). Hence,
in the spirit of the Wiener process simulation we are concerned with a higher-level
representation of V (t) =

∫ t
0 U(s) − E(U(s)) (ds)1/2, i.e., a linear transformation B

with the property that [BW2](t) and V (t) have the same covariance kernels, where
W2 is a Wiener process on [0, 1].

Note that by assumption E[U(s)U(t)] = E(U(s))E(U(t)), and so E[(U(s) −
E(U(s)))(U(t) − E(U(t)))] = 0 for 0 ≤ s, t ≤ 1 and s 6= t. Following the pattern
established for the Wiener process let V (t) =

∫ t
0 (U(s) − E(U(s))) (ds)1/2, for 0 ≤

t ≤ 1, with variance

k3(t) = E[(V (t))2]

=
(p3 + (1 − p)4/3)(2t3 − 3t2 + 6t)

108
.

The variance of V (t) is estimated at the lower level and passed up to the next
higher level. At the higher level, the decision maker focuses on the increasing
function k3 defined on [0, 1]. For a given subinterval [s, t] of [0, 1], the ratio (k3(t)−
k3(s))/(t− s) is interpreted at the lower level as the average variance of the utility
U on [s, t]. At the higher level, the ratio is the proxy for the average variance of
mission related maintenance.

Let R3(s, t) = k3(min(s, t)) and BW2 be the limit in distribution of (RC
3tt)

T Zt.
Again, Z is a (0, 1)-normal function on [0, 1]. Since R3 is the covariance kernel for
V , [BW2](t) and V (t) have the same covariance kernels and we conclude that B is
a reduced-order representation of V . The discrete representation of B is (RC

3tt)
T .

The dependence of the reduced-order representation B of the centered logistics
design p is illustrated by the plots in Figure 9.

4.3.2 Representation of a higher-level model of the balance of a

suspension design

For a fixed Design m1, we will show that analysis of the simulations supports

E(P (x, y)P (x̄, ȳ)) = E(P (x, y))E(P (x̄, ȳ))

for 1.5 ≤ x, x̄ ≤ 4, 0.25 ≤ y, ȳ ≤ 1.5 and (x, y) 6= (x̄, ȳ). Let xi = 1.5 +
0.25(i − 1) and yj = 0.25+).125(j − 1), i, j = 1, 2, . . . , 11. For random choices of
(xi, yj) and (xk, yℓ), (xi, yj) 6= (xk, yℓ), we observe that P (xi, yj) − E(P (xi, yj))
and P (xk, yℓ) − E(P (xk, yℓ)) are uncorrelated. For instance, when m1 = 1/2 the
estimated correlation coefficient of P (x6, y10) − E(P (x6, y10)) and P (x11, y13) −
E(P (x11, y13)) is -0.0050.
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Because of the burden of a complete computation, we will rely on sampling
from the 1212 data points. Let

R̄(xi, yj, xk, yℓ) = E[(P (xi, yj) − E(P (xi, yj)))(P (xk , yℓ) − E(P (xk, yℓ)))].

For a random sample S of 4-tuples (xi, yj, xk, yℓ) of size 121, chosen without
replacement and (xi, yj) 6= (xk, yℓ), the sample mean of R̄(S) is 2.4220e-04 and
the sample variance is 7.8929e-06.

Roughly, the same results hold for all five designs. We conclude that assuming
R̄(xi, yj, xk, yℓ) = 0 for (xi, yj) 6= (xk, yℓ) is a reasonable modeling approximation
for each design. Therefore the covariance kernel of P−E(P ) reduces to the variance
field, a function of two variables, which determines P − E(P ).

In order to simplify the notation, we normalize the domain of the suspension
balance P as [0, 1]× [0, 1] and introduce the transformed balance function P̄ . Let
P̄ (u, v) = P (1.5(1 − u) + 4.0u, 0.25(1 − v) + 1.5v) for 0 ≤ u, v ≤ 1. Suppose that
the suspension design is fixed with balance function P̄ . We are concerned with a
representation of

Q̄(u, v) =

∫ u

0

∫ v

0
P̄ (x, y) − E(P̄ (x, y)) (dx)1/2 (dy)1/2,

i.e., a linear operator A with the property that AW1 and Q̄ have the same covariance
kernels, where W1 is a Wiener field on [0, 1] × [0, 1]. Let µA(u, v) = E(P̄ ) be
the mean balance function, a proxy at the higher level of expected maintenance
resulting from the operating environment.

For the variance σ2
A(u, v) of the higher-level balance function Q̄(u, v),

σ2
A(u, v)

= E[Q̄2(u, v)]

=

∫ u

0

∫ v

0
E[(P̄ (x, y) − E(P̄ (x, y)))2] dy dx.

Because Q̄ is a function of two variables, we introduce two increasing functions
k1(u) = σ2

A(u, 1)/σA(1, 1) and k2(v) = σ2
A(1, v)/σA(1, 1). Let R1(u, ū) = k1(min(u, ū))

and R2(v, v̄) = k2(min(v, v̄)). Notice that R1 and R2 are defined in terms of the
marginal distributions of Q̄.

Let RC
1uu be an upper triangular matrix such that (RC

1uu)T · RC
1uu = R1uu.

Define RC
2vv in a similar way. We define AW1 to be the limit in distribution of

(RC
1uu)T ZuvR

C
2vv , where Z is a (0, 1)-normal function on [0, 1] × [0, 1]. For the

numerical example, the analysis of the simulations supports that the covariance of
AW1 is a good approximation to the covariance of Q̄.

The lower-level designers pass up to the next level for each design the expected
performances of the suspension design µA(u, v) = E(P (u, v) and of the logistic
design µB(t) = E(U(t)). In addition, the two operators A and B are passed up
in the form of the increasing functions k1(u), k2(v), and k3(t) that determine the
operators. In the next section, the reduced-order information model of each vehicle
design will be developed in terms of µA, µB, k1, k2, and k3.
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5 Construction of the higher-level decision

model

In this section, we assume the reduced-order component models in the transforma-
tion sense and matrix realizations of approximate reduced-order component models
using the lower-level estimates of the second-order statistics of the design perfor-
mance fields. The matrix realizations are used to produce simulations of higher-
level information models of the two-component system illustrated in Figure 1. In
Section 5.2.4 , generic formulas are given for constructing more complex system
models from reduced-order component models with more than two components.

The section concludes with multicriteria decision methods employed to produce
a preferred multicomponent design using data from the vehicle model. The data
could be taken as results of a prototype testing program. The presentation is
illustrated with the simplified example but the methodology is general and can be
applied to larger, more realistic problems.

5.1 Interactions of the two components

Folklore has it that in conflicts between subdesigns the model with the most physics
wins. If this held for our toy problem then the suspension system designer would
be able to dictate to the logistics designer slighting mission concerns. However,
mission concerns pay the bills. Can the higher-level decision maker reach a reason-
able compromise producing a vehicle that is both useful and maintainable? For a
“reasonable compromise” the tradeoffs should be quantifiable, the preference rule
should be explicit or archivable, and the decision should guide lower-level designers
to improvements in later stage designs. “Just politics” is not an adequate lower-
level interpretation of higher-level decisions.

A design for the suspension system and a logistics design for the load capacity
interact as follows. Expected vehicle and load stress is given for each suspension
design. Also, expected vehicle utility is given for each payload design. Notice
that the covariance kernel of AW1 is the covariance kernel of Q̄. Similarly, V and
BW2 have the same covariance kernels. Assume that µA + AW1 is an acceptable
reduced-order approximation for the performance field for the suspension system
performance and µB + BW2 is an acceptable reduced-order approximation for the
performance process for the payload design. Further, assume that the influences of
Q̄ on V and of V on Q̄ do not affect the expected performance of either, only the
respective variances that are related to risk.

We assume that increased payload utility results in increased suspension im-
balance, but increased suspension imbalance results in decreased payload utility.
Thus, we have conflicting component design goals: maximize payload utility and
minimize suspension imbalance. Formally, assume (see Figure 1) that

Q̄ = G1 = A(aW1 + bG2),
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where a, b ≥ 0 and a + b = 1, and

V = G2 = B(cW2 − dG1),

where c, d ≥ 0 and c + d = 1.
Thus the performance variance (or performance variability) of the suspension

design is the result of applying A to the exogenous disturbance aW1 + bG2. Notice
that we are replacing a portion of the uncolored disturbance with a “colored” dis-
turbance, i.e., bG2 is the “colored” portion of the background disturbance affecting
Q̄. The technical details, including extensions of A and B, will be provided in the
next subsection. Similarly, the performance variance (or performance variability)
of the load capacity design is the result of applying B to the exogenous disturbance
cW2 − dG1. Concurrent design requires a higher-level decision maker to coordinate
tradeoffs between the lower-level designs in the presence of uncertainty and risk.

5.2 Matrix realizations of the approximate reduced-

order models

The matrix realizations of the discretized models provide the basis for numerical
models and implementation of a decision methodology. At this point, considering
the reduced- order models more abstractly is useful. The presentation, already
complicated, is simplified by ignoring the physical and and probabilistic interpre-
tations of the models. Further, the results are general in the sense that other
design coordination problems can be considered using the formulas developed in
this section.

5.2.1 Extensions of the higher level models A and B

We extend A to functions of three variables as follows:

[(AH)uvt](ℓ, m, n)

= [(RC
1uu)T (KC

uu)−T Huvt(·, ·, n)(KC
vv)

−1RC
2vv ](ℓ, m).

In order to simplify notation, let Aκ = RC
1uu and Aν = RC

2vv . Then

[(AH)uvt](ℓ, m, n) = [AT
κ (KC

uu)−T Huvt(·, ·, n)(KC
vv)

−1Aν ](ℓ, m).

In particular, when H = W , we have

[(AW )uvt](ℓ, m, n)

=
n

∑

k=1

[(KC
tt )

T ](n, k))[AT
κ ](ℓ, ·)Zuvt(·, ·, k)Aν(·, m). (5)

Notice the close relationship of Equations (1) and (5).
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If we choose Aλ = KC
tt then

[(AW )uvt](ℓ, m, n)

=
ℓ

∑

i=1

m
∑

j=1

n
∑

k=1

[AT
κ ](ℓ, i)[AT

ν ](m, j)[AT
λ ](n, k)Zuvt(i, j, k).

Extend B to functions of three variables as follows:

[(BH)uvt](ℓ, m, n) = [BT
λ (KC

tt )
−T Huvt](ℓ, m, ·)](n).

Also, if we choose Bκ = KC
uu and Bν = KC

vv , then

[(BW )uvt](ℓ, m, n)

=
ℓ

∑

i=1

m
∑

j=1

n
∑

k=1

[BT
λ ](ℓ, i)[BT

ν ](m, j)[BT
λ ](n, k)Zuvt(i, j, k).

Therefore

[(ABH)uvt](ℓ, m, n)

=
n

∑

k=1

[BT
λ (KC

tt )
−T ](n, k)[AT

κ (KC
uu)−T Huvt(·, ·, k)(KC

vv)
−1Aν ](ℓ, m)

and

[(ABW )uvt](ℓ, m, n)

=
ℓ

∑

i=1

m
∑

j=1

n
∑

k=1

[AT
κ ](ℓ, i)[AT

ν ](m, j)[BT
λ ](n, k)Zuvt(i, j, k). (6)

Similarly

[(BAH)uvt](ℓ, m, n)

=
n

∑

k=1

[BT
λ (KC

tt )
−T ](n, k)[AT

κ (KC
uu)−T Huvt(·, ·, k)(KC

vv)
−1Aν ](ℓ, m) (7)

= [(ABH)uvt](ℓ, m, n).

5.2.2 Separable approximations

Referring to Figure 1, the higher-level design decisions are based on the interaction
functions G1 and G2.

One would not expect that (A + B)1/2 = A1/2 + B1/2 or that the sum of two
separable fields is separable (refer to the comments on separable fields in Section
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2). Separable approximations of I + AB, discussed in Reneke and Samson (2008),
play a role at the higher level in the construction of multiple-component system
models. We will continue the discussion of these technical matters in the context of
our example in the next section. To repeat, a complete understanding of the details
is not necessary to apply the modeling methods, i.e., the designer can proceed in
terms of the finite discrete approximations.

Given the interaction functions G1 and G2,

G1 = A(aW1 + bG2)

G2 = B(cW2 − dG1),

we proceed formally omitting necessary details. We express G1 and G2 in terms of
A and B as

G1 = (I + bdAB)−1(aAW1 + bcABW2) (8)

G2 = (I + bdBA)−1(cBW2 − adBAW1). (9)

Note that in (6) and (7) we have already shown how to compute ABW and BAW
and now turn to the existence of inverses (I + bdAB)−1 and (I + bdBA)−1. Each
inverse has the form of a desired operator arrived at through formal manipulations
but is ultimately meaningless. Also, since the fields W +bdABW and W +bdBAW
are not separable, the inverses are difficult to compute. However, we can approxi-
mate the desired operator by replacing I + bdAB with a separable approximation
and attach a meaning to (I + bdAB)−1.

We turn to separable approximations with analytic inverses. To simplify the for-
mulas, let Ŷ1uvt = (W+bdABW )uvt and Ŷ2uvt = (W+bdBAW )uvt. The approxima-
tions require the computation of both var(Ŷ1(uℓ, vm, tn)) and var(Ŷ2(uℓ, vm, tn)).
We see that

var(Ŷ1(uℓ, vm, tn))

= uℓvmtn + 2bd[AT
κ KC

uu](ℓ, ℓ)[(KC
vv)

T Aν ](m, m)[BT
λ KC

tt ](n, n)

+b2d2k1(uℓ)k2(vm)k3(tn).

A separable approximation of Ŷ1uvt requires three matrices which, for the moment,
we will denote by Cκ, Cλ, and Cν . We require that these matrices satisfy the
following conditions:

var(Ŷ1(uℓ, vM , tN )) = [CT
κ Cκ](ℓ, ℓ)[CT

ν Cν ](M, M)[CT
λ Cλ](N, N) (10)

var(Ŷ1(uL, vm, tN )) = [CT
κ Cκ](L, L)[CT

ν Cν ](m, m)[CT
λ Cλ](N, N) (11)

var(Ŷ1(uL, vM , tn)) = [CT
κ Cκ](L, L)[CT

ν Cν ](M, M)[CT
λ Cλ](n, n). (12)

We can obtain the matrices as follows. Let

k4(uℓ) = var(Ŷ1uvt(ℓ, M, N))/var(Ŷ1uvt(L, M, N))2/3

k5(vm) = var(Ŷ1uvt(L, m, N))/var(Ŷ1uvt(L, M, N))2/3

k6(tn) = var(Ŷ1uvt(L, M, n))/var(Ŷ1uvt(L, M, N))2/3.
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Note that k4(1) = k5(1) = k6(1) = var(Ŷ1uvt(L, M, N))1/3. As we have done
before, let

R4(u, ū) = k4(min(u, ū)) (13)

R5(v, v̄) = k5(min(v, v̄)) (14)

R6(t, t̄) = k6(min(t, t̄)) (15)

and define

Cκ = RC
4uu (16)

Cν = RC
5vv (17)

Cλ = RC
6tt. (18)

Using (16-18) and (13-15), we calculate

[CT
κ Cκ](ℓ, ℓ)[CT

ν Cν ](M, M)[CT
λ Cλ](N, N)

= R4(uℓ, uℓ)R5(1, 1)R6(1, 1)

= k4(uℓ)k5(1)k6(1)

= var(Ŷ1(uℓ, vM , tN )),

which shows that matrices Cκ, Cλ and Cν defined in (16-18) satisfy condition (10).
Similarly, these matrices satisfy conditions (11) and (12).

Let C be the operator defined by

[CW ](uℓ, vm, tn) =
ℓ

∑

i=1

m
∑

j=1

n
∑

k=1

CT
κ (ℓ, i)CT

ν (m, j)Cλ(n, k)Zuvt(i, j, k).

CW is the separable approximation of Ŷ1uvt = (W + bdABW )uvt, as shown in
Reneke and Samson (2008). The separable approximation of Ŷ2uvt = (W+bdBAW )uvt

is constructed in the same manner.

5.2.3 Separable approximations for (I + bdAB)−1

Let C be the separable approximation of the field I + bdAB and C−1 be the
separable operator defined by

(C−1)κ = KC
uu(Cκ)−1KC

uu

(C−1)ν = KC
vv(Cν)

−1KC
vv

(C−1)λ = KC
tt (Cλ)−1KC

tt .

Note that (C−1)κ(KC
uu)−1Cκ(KC

uu)−1 = KC
uu(Cκ)−1KC

uu(KC
uu)−1Cκ(KC

uu)−1 = I
Similarly, Cν(K

C
vv)

−1(C−1)ν(KC
vv)

−1 = I and (C−1)λ(KC
tt )

−1Cλ(KC
tt )

−1 = I.
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If H1 is a Hellinger integrable function with H1(0, v, t) = H1(u, 0, t) = H1(u, v, t) =
0 and H2 = CH1 then

[C−1H2](uℓ, vm, tn)

= [(C−1)Tκ (KC
uu)−T (

n
∑

k=1

[(C−1)Tλ (KC
tt )

−T ](n, k)H2uvt(·, ·, k))(KC
vv)

−1(C−1)ν ](ℓ, m)

=
n

∑

k=1

n
∑

k̄=1

[(C−1)Tλ (KC
tt )

−T ](n, k)[CT
λ (KC

tt )
−T ](k, k̄)H1uvt(ℓ, m, k̄))

=
n

∑

k̄=1

Itt(n, k̄)H1uvt(ℓ, m, k̄)

= H1uvt(ℓ, m, n)

and so C−1 is the inverse of the separable approximation C of I + bdAB. Based
on this derivation, we have

G1 ∼ C−1(aAW1 + bcABW2) (19)

G2 ∼ C−1(cBW2 − adBAW1). (20)

5.2.4 The algebra of discrete operators

From here to the end of the section we are not concerned with the origin of the
reduced order representations of the component models but rather with the con-
struction of information models of the system and the use of information models
in decision making. We can build more complex information models by observing
the following rules. Assuming that A and B are known separable nonnegative op-
erators on the space of Hellinger integrable functions on [0, 1] × [0, 1] × [0, 1] we
have

(AB)κ = Bκ(KC
uu)−1Aκ (21)

(AB)ν = Bν(K
C
vv)

−1Aν (22)

(AB)λ = Bλ(KC
tt )

−1Aλ (23)

(A−1)κ = KC
uu(Aκ)−1KC

uu (24)

(A−1)ν = KC
vv(Aν)−1KC

vv (25)

(A−1)λ = KC
tt (Aλ)−1KC

tt (26)

k4(u) = var([W + AW ](u, 1, 1)) (27)

k5(v) = var([W + AW ](1, v, 1)) (28)

k6(t) = var([W + AW ](1, 1, t)) (29)

R4(u, ū) = k4(min(u, ū)) (30)

R5(v, v̄) = k5(min(v, v̄)) (31)

R6(t, t̄) = k6(min(t, t̄)) (32)

(I + A)κ ∼ RC
4uu (33)
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(I + A)ν ∼ RC
5vv (34)

(I + A)λ ∼ RC
6tt. (35)

The notation A, B, etc. is meant to be generic, i.e., not referencing the specific
operators, etc. of the illustrative example. Notice that equations (27-29) would
have to be expanded. The fifteen formulas can serve as the basis for numerical
simulations, an easy task using MatLab.

5.3 Simulation of the higher-level information model

From (19), the simulation of G1 becomes

G1(uℓ, vm, tn) = a[(C−1AW1)uvt](ℓ, m, n) + bc[C−1ABW2)uvt](ℓ, m, n)

and so

var(G1(uℓ, vm, tn))

= a2[(C−1)Tκ (KC
uu)−1R1(K

C
uu)−1(C−1)κ](ℓ, ℓ) ·

[(C−1)Tν (KC
vv)

−1R2(K
C
vv)

−1(C−1)ν ](m, m) · k6(tn)

+ b2c2k4(uℓ)k5(vm)[(C−1)Tλ (KC
tt )

−1R3(K
C
tt )

−1(C−1)λ](n, n).

We are lucky in that var(Ŷ2(ℓ, m, n)) = var(Ŷ1(ℓ, m, n)). Therefore, the sim-
ulation of G2 becomes

G2(uℓ, vm, tn) = c[(C−1BW2)uvt](ℓ, m, n) − ad[C−1BAW1)uvt](ℓ, m, n)

and

var(G2(uℓ, vm, tn))

= a2d2[(C−1)Tκ (KC
uu)−1R1(K

C
uu)−1(C−1)κ](ℓ, ℓ) ·

[(C−1)Tν (KC
vv)

−1R2(K
C
vv)

−1(C−1)ν ](m, m) · k6(tn)

+ c2k4(uℓ)k5(vm)[(C−1)Tλ (KC
tt )

−1R3(K
C
tt )

−1(C−1)λ](n, n).

The computations are easy because of our deliberate choices Aλ = KC
tt , Bκ =

KC
uu, and Bν = KC

vv . Other choices would introduce more realism but complicate
the computations.

The following special cases are easy to check. If bd = 0 then C−1 = I.
If b = 0 then G1 = AW1 and var(G1(uℓ, vm, tn)) = k1(uℓ)k2(vm). Also, G2 =

cBW2 − dAW1 and var(G2(uℓ, vm, tn)) = c2k3(tn) + d2k1(uℓ)k2(vm).
If d = 0 then G1 = AW1 + bBW2 and var(G1(uℓ, vm, tn)) = a2k1(uℓ)k2(vm) +

b2k3(tn). Also, G2 = BW2 and var(G2(uℓ, vm, tn)) = k3(tn).
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The decision surrogates. Of course, the operators A and B in the example
depend on the designs of the suspension and payload partition, respectively. We
have chosen to simplify our notation by not including this dependence explicitly in
the notation.

Suppose that M1 is a deterministic surrogate for “imbalance”, i.e., in the ab-
sence of exogenous random disturbances including the influence of other compo-
nents, the design minimizing M1 should be preferred by the higher-level decision
maker. Possibilities for M1, a function of the uncertainties determined by the “sus-
pension design”, are dependent on the application. Thus M1 is information the
higher-level decision maker can use in coordinating various subcomponent designs.
M1 is provided by the lower-level designer and so approved at the lower level for
use in “determining maintenance requirements”. The lower-level designer is saying
that the performances of his/her designs are properly characterized for the higher-
level use by M1. Everything depends on this understanding. Similar remarks hold
for M2 as a surrogate for “usefulness and the logistics planner”.

The higher-level two-component decision surrogate becomes

MS1(ℓ, m, n) = M1(ℓ, m) + sqrt(var(G1(ℓ, m, n))) (36)

MS2(ℓ, m, n) = M2(n) − sqrt(var(G2(ℓ, m, n))). (37)

A system Design α is said to dominate a system Design β if, introducing
an explicit dependence on the design, MS1(ℓ, m, n, α) ≤ MS1(ℓ, m, n, β) and
MS2(ℓ, m, n, α) ≥ MS2(ℓ, m, n, β) for all (ℓ, m, n) with at least one strict in-
equality. Again, a preference rule will have to be applied in case there is no single
higher-level design dominating all others.

5.4 Tradeoff decisions for the complete vehicle model

Recall that G1 is the performance of a suspension design coupled with a a logis-
tics design. G2 is the performance of a logistics design coupled with a suspen-
sion design. There are six suspension designs and twelve logistics designs forming
seventy-two composite designs at the higher level. Each composite design is eval-
uated in four operating environments and for seven missions chosen to illustrate
the method. The uncertain parameter pairs (b1, b2) (operating environments) are
{(2.2143, 0.6071), (2.2143, 1.2024), (3.4048, 0.6071), (3.4048, 1.2024)}. The nor-
malized trip lengths (missions) are {0.0781, 0.2031, 0.3281 0.4531, 0.5781, 0.7031,
0.8281}. Obviously, the require data for the decision problem grows combinato-
rially which justifies the interest in reduced-order component models and vehicle
models.

Modeling the level of component interactions, i.e., choosing b and d, determines
the preferred component designs. We assume that either the higher-level decision
maker has some additional knowledge or intuition or can explore the consequences
of various combinations of b and d until a satisfactory design is obtained. Our
position is that models do not make decisions but are an aid for the decision maker
concentrating attention on the essential elements of the physical artifact.
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Below we discuss possible choices of b and d affecting the interaction the two
components. For each choice, the seventy-two designs were evaluated using the
domination rule (36-37) and the ℓ2 metric was employed to identify a preferred
design.

Recall that a = 1 − b and c = 1 − d. For instance, if b = 0 then G1 = AW1

and the higher-level preferred suspension design is m1 = 1.6406. The lower-
level preferred suspension design from Section 4.1.1 is m1 = 1.6328. Further,
var(G1(uℓ, vm, tn)) = k1(uℓ)k2(vm), G2 = cBW2−dAW1, and var(G2(uℓ, vm, tn)) =
c2k3(tn) + d2k1(uℓ)k2(vm).

If d = 0 then G1 = AW1 + bBW2, var(G1(uℓ, vm, tn)) = a2k1(uℓ)k2(vm) +
b2k3(tn), G2 = BW2, and the higher-level preferred logistics design is p = 0.4279.
The lower-level preferred logistics design from Section 4.2.2 is p = 0.1309. Also
k3(tn) = var(G2(uℓ, vm, tn)). The discrepancy can be attributed to two factors.
The composite design is based on a higher-level model and the coupling resulting
from multicriteria methods.

If b = d = 1 then the higher-level preferred vehicle design is m1 = 1.6797
and p = 0.4279. If b = d = 1/2 then the higher-level preferred vehicle design
is m1 = 1.6328 and p = 0.3580. In the latter case, some surrogates for G1, t =
0.0781, 0.4531, 0.8281, and G2, (b1, b2) = (2.2143, 0.6071), (2.2143, 1.2024), (3.4048,
0.6071), (3.4048, 1.2024), are plotted in Figure 10.

The variety of possible preferred vehicle designs using different modeling as-
sumptions are listed the following table.

b d m1 p

0 0 1.6406 0.4279

1/2 0 1.6406 0.4279

1 0 1.6797 0.4279

0 1/2 1.6406 0.4279

1/2 1/2 1.6328 0.3580

1 1/2 1.6797 0.4279

0 1 1.6406 0.4279

1/2 1 1.6328 0.3085

1 1 1.6797 0.4279

Archiving the results. A potential benefit of the design process divided into
stages is the availability of the design history to designers in the current stage,
clarifying goals and justifying constraints. We would like to be able to review a
decision at a later time, perhaps changing the preference rule, the confidence level,
or the interaction parameters. What is needed in a particular case?

• Exploring alternate preference rules requires the decision variables for each
subdesign.

• Exploring alternate confidence levels requires the second-order statistics of
G1 and G2 for each subdesign.
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• Exploring alternate interaction parameters (a, b, c, d) requires the represen-
tations of all of the operators for each subdesign.

We are not advocating changing the design decisions of a previous stage but, rather,
maintaining the spirit of a previous stage in a long design process.

5.5 Section summary

Motivated by the example, we have outlined a general approach to developing an
information model with two components and three uncertainties. The key step
is producing the reduced-order models AW and BW . The variety of possible
component models prevents us from laying out ground rules for this step. We have
illustrated the fundamentals for two quite different component models.

Based on the system model, tradeoffs can be made by the higher-level decision
maker using multicriteria methods to produce a preferred system design. Because
there is no single way of accomplishing this goal, we have illustrated one way in
the example.

Using obvious extensions of the operator algebra, the methods can be applied to
decision problems with more components and more uncertainties. While problems
can grow in size and complexity rapidly, the design stage/design level paradigm is
intended to limit the growth. We have run test problems with three components
and two uncertainties.

6 Concluding remarks

We have proposed an information model approach to the design of complex (mul-
ticomponent) engineering systems which is based on the algebra of reduced-order
representations. Higher-level design decisions, the result of tradeoffs between alter-
native component designs, are made in terms of the second-order statistics of the
component response fields. Since the statistics are functions of the uncertainties,
multicriteria optimization methods are used to determine preferred higher-level
designs.

Modeling the uncertainties as independent variables changes our viewpoint free-
ing up possibilities. In particular, shifting from time to the uncertainties as the
independent variables tying component models together eliminates the time-scale
problem. The higher-level coordination of lower-level designs eliminates the curse
of dimensions and the problem of incompatible mathematical representations. Our
use of the Central Limit Theorem in the construction of the higher- level decision
model simplifies the higher-level decision making by moving all of the stochastic
modeling into the Gaussian framework. The introduction of reduced-order repre-
sentations and separable approximations support an algebra of linear operators as
a modeling tool available to a wide class of decision makers. Multicriteria optimiza-
tion framework allows lower-level designers to make use of tools from the measures
of risk literature in the presence of Knight’s uncertainty. We conclude that an
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information model approach to multidisciplinary design optimization is feasible for
complex systems with incompatible component models.

We have chosen the illustrative example for the variety of possibilities provided:
multi-scale time and length, dynamic models paired with static models, data based
analysis paired with analysis based on expert opinion, multiple knowledge bases,
different attitudes toward risk, etc.

In this exposition, we have presented one stage of the design process and il-
lustrated the approach assuming two levels and two components. We have not
addressed other issues of the overall design process such as multiple stages, levels,
and components, which will naturally motivate future research directions.

Assuming multiple design stages, in the next stage the lower-level designers
will know which of their efficient designs was preferred. Using this information
as a starting point, the inference is that some subrange of the uncertainties is
less important so that in the next stage, the previous-stage range will be reduced.
The higher-level designer will have a better understanding of possible component
designs. Goals can be adjusted to fit the achievable possibilities.

For complex systems at advanced design stages, we would expect several deci-
sion levels. Each lower level would pass up all efficient coordinated designs, i.e., the
second-order statistics of the performance of each alternative. At each level, the
decision process would reduce the set of feasible designs but the numbers passed
up would grow emphasizing the importance of analytic methods and reduced-order
models. There would be no preferred design until the final top level.

Our concern in developing a design philosophy for large complex systems has
been preserving a role for engineering judgment at each level. Transparency of the
approach is easier to maintain when the number of components in the coordination
decision is small. A reasonable maximum for the number of components might
be three. Remember that the higher-level decision maker might not understand
the lower-level models or design methods. With our approach we intend to assist
the designer rather than usurp his or her proper role and believe that models and
methods should be a tool for a design decision.

As the design focus passes through levels, up and down, uncertainties may be
added or dropped during the process. Note that higher-level designers will face
uncertainties which are meaningless to lower-level designers. As we have already
mentioned, manufacturing costs might be inappropriate as a factor for lower-level
designers. Similarly, lower-level designers will face uncertainties which are mean-
ingless to higher-level designers. For instance, geometric constraints limiting the
number of passengers with their mission mandated equipment might be meaning-
less to the higher- level designer. While we have only considered a few simple
possibilities, schemes for adding and dropping uncertainties should be explored.

While not discussed in this paper, our approach based on multicriteria methods
satisfy Savage’s first four postulates guaranteeing rational decisions. This is impor-
tant in light of Hazelrigg’s powerful criticism of current design selection methods
Hazelrigg (2003). Further, the use of multicriteria methods is an important consid-
eration for decisions in the presence of uncertainty as illustrated by the discussion
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of Ellsberg’s famous urn paradox elsewhere (Samson and Reneke, 2009).
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Figure 1. The conceptual model of the the interactions of the suspension and
logistic designs.

Figure 2. The 3-spring system.
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Figure 3. Difference of dissipated energy for b1 = 1.75 , b2 = 0.375, and m1 = 1/2.
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Figure 4. The interpolating curve of µ(b1, b2, ·) + σ(b1, b2, ·) for b1 = 1.75 and
b2 = 0.375.
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Figure 5. Surfaces µ(·, ·, m1) + σ(·, ·, m1).
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Figure 6. The functions {mini(t), modei(t), maxi(t)} for 0 ≤ t ≤ 1 for the
distributions of U1 and U2.
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Figure 7. Value at risk for four designs with α = 0.85.
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Figure 9. Plots of k3 defining the reduced-order representations of B for three
different logistics designs.
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Figure 10. The surrogate for G1 is influenced by the mission and the surrogate for
G2 is influenced by the operating environment.
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